Introduction to Resampling Methods Using R
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1. Sampling from known distributions and simulation

In introductory statistics courses we are told that the t-test is “robust” to departures from
normality, especially if the sample size is large. What this means is if we specify a particular
Type | error rate, then the actual proportion of false rejections will be close to the Type I error
rate. Let’s create and run a simulation to explore this.

Steps.
1. Generate a random sample from some population distribution
2. Calculate sample mean, standard deviation and t test statistic
3. Decide if the null hypothesis is rejected
4. Repeat 1-3, counting the number of rejections

1.1. Sampling from normal distributions

counter <- © # set counter to ©
t.crit <- qt(0.95,14) #5% critical value

for (i in 1:1000)
{

X <- rnorm(15, 25, 4) # draw a random sample of size 15
from a N(25,4) distribution
t <- (mean(x)-25)*sqrt(15)/sd(x)
if (t >= t.crit) # check to see if result 1is significant
counter <- counter + 1 # increase counter by 1

}

counter/1000 #compute estimate of Type I error rate

## [1] 0.06

If we execute this code again, a different set of random samples will be selected, and a different
estimate obtained

counter <- O # set counter to ©
t.crit <- qt(0.95,14)  #5% critical value

for (i in 1:1000)
{
X <- rnorm(15, 25, 4) # draw a random sample of size 15
from a N(25,4) distribution
t <- (mean(x)-25)*sqrt(15)/sd(x)
if (t >= t.crit) # check to see if result 1is significant
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counter <- counter + 1 # increase counter by 1

counter/1000 #compute estimate of Type I error rate

## [1] 0.043

1.2 Specify a seed to get identical results each time.

set.seed(4123)
counter <- © # set counter to ©

t.crit <- qt(0.95,14)  #5% critical value

for (i in 1:1000)
{
X <- rnorm(15, 25, 4) # draw a random sample of size 15
from a N(25,4) distribution
t <- (mean(x)-25)*sqrt(15)/sd(x)
if (t >= t.crit) # check to see if result 1is significant
counter <- counter + 1 # increase counter by 1

counter/1000 #compute estimate of Type I error rate

## [1] 0.043

Execute the same code again:

set.seed(4123)

counter <- © # set counter to ©
t.crit <- qt(0.95,14)  #5% critical value

for (i in 1:1000)
{

X <- rnorm(15, 25, 4) # draw a random sample of size 15
from a N(25,4) distribution
t <- (mean(x)-25)*sqrt(15)/sd(x)
if (t >= t.crit) # check to see if result is significant
counter <- counter + 1 # increase counter by 1

}

counter/1000 #compute estimate of Type I error rate

## [1] 0.043



Instead of using a counter, we may want to store the results so they can be explored later. In the
code below, a vector is created and used to store the calculated t-statistics.

set.seed(4123)

nsims <- 1000

t.crit <- qt(0.95,14) #5% critical value

results <- numeric(nsims) #Vector to store t statistics

for (i in 1l:nsims)

{

X <- rnorm(15, mean=0, sd=1) # draw a random sample of size 15

from a N(25,4) distribution
results[i] <- (mean(x)-0)*sqrt(15)/sd(x)
¥

sum(results >= t.crit)/nsims #compute estimate of error rate

## [1] 0.043

Having the results saved in a vector allows us to explore the actual sampling distribution. Below
we graphically assess agreement between theoretical and actual distributions.

hist(results, freq = F, ylim=c(0,0.4)) # Plot histogram of t
statistics
curve(dt(x,14), add = TRUE) # superimpose t(14) density
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1.3 Sampling from an exponential distributions

set.seed(4123)

nsims <- 1000

t.crit <- qt(0.95,14) #5% critical value

results <- numeric(nsims) #Vector to store t statistics

for (i in 1:nsims)

{

X <- rexp(1l5, rate=1/25) # draw a random sample of size 15 from an
Exp(mean=25) distribution
results[i] <- (mean(x)-25)*sqrt(15)/sd(x)
}

sum(results >= t.crit)/nsims #compute estimate of error rate

## [1] 0.015

Graphically assess agreement between theoretical and actual distributions.

hist(results, freq = F, xlim=c(-6,4), ylim=c(0,0.4)) # Plot histogram of
t statistics
curve(dt(x,14), add = TRUE) # superimpose t(14) density
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Available distributions (http://www.stat.umn.edu/geyer/old/5101/rlook.html)

Distribution

Beta

Binomial

Cauchy
Chi-Square
Exponential

F

Gamma
Geometric
Hypergeometric
Logistic

Log Normal
Negative Binomial
Normal

Poisson

Student t
Studentized Range
Uniform

Functions
pbeta gbeta dbeta
pbinom gbinom dbinom
pcauchy qcauchy dcauchy
pchisq gchisq dchisq
pexp gexp dexp
pf qf df
pgamma ggamma dgamma
pgeom qggeom dgeom
phyper ghyper dhyper
plogis qlogis dlogis
pInorm qlnorm dinorm
pnbinom gnbinom dnbinom
pnorm gnorm dnorm
ppois qpois dpois
pt qt dt
ptukey qtukey dtukey
punif qunif dunif
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rbeta
rbinom
rcauchy
rchisq
rexp

rf
rgamma
rgeom
rhyper
rlogis
rinorm
rnbinom
rnorm
rpois
rt
rtukey
runif



Weibull pweibull qweibull dweibull rweibull
Wilcoxon Rank Sum Statistic pwilcox gwilcox dwilcox rwilcox
Wilcoxon Signed Rank Statistic psignrank gsignrank dsignrank rsignrank



2. Bootstrap Confidence intervals

Suppose we want to estimate a population parameter, based on random sample.

- Classical World: Observe one sample and the value of the sample statistic. Sampling
distribution is determined by considering all possible (unobserved) samples from the same
assumed population. Cannot directly observe the sampling distribution.

- Bootstrap World: Rather than assume a population, consider the observed sample to be the
best estimate of the population. In fact, we will assume that it represents the probability
distribution for the population. We can then generate all (or at least very many) possible
samples by taking bootstrap samples (with replacement), from this estimated population and
thus observe the sampling distribution of the sample estimator.

2.1 Drawing bootstrap samples using R.
We start with a very small data set, a set of new employee test scores:
23, 31,37, 46, 49, 55, 57
First select a sample of size 7, with replacement and compute the mean of the bootstrap sample.

score <- c(37,49,55,57,23,31,46)
mean <- mean(score)
mean

## [1] 42.57143

boot <- sample(score, size=7, replace=TRUE)
boot

## [1] 31 37 31 31 31 37 31

mean.boot <- mean(boot)
mean.boot

## [1] 32.71429



We need to do this many times to estimate the sampling distribution of the mean.

score <- c(37,49,55,57,23,31,46)
mean <- mean(score)
mean

## [1] 42.57143

N <- length(score)

nboots <- 10000
boot.result <- numeric(nboots)
for(i in 1:nboots)

{

boot.samp <- sample(score, N, replace=TRUE)
boot.result[i] <- mean(boot.samp)

}

hist(boot.result)
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2.2 Bootstrap confidence intervals

Example. Suppose we have a random sample of size 30 from an exponential distribution with
mean 25. We want to use the sample mean to estimate the population mean.

We will discuss three ways to construct confidence intervals using bootstrapping.

2.2.1 Percentile method

If the estimator of the population parameter is the statistic used to create the

distribution (e.g., the sample mean), then the confidence interval is simply the equal-tail

quantiles that correspond to the confidence level.

Bootstrap 95% percentile confidence interval

set.seed(4123)
X.exp <- rexp(390, rate=1/25)
X.exp

#it
##
#it
#it
##

[1]
[7]
[13]
[19]
[25]

2.528853
10.787030
19.283214

6.153141
14.237094

boxplot(x.exp)

2.235845
9.792154
70.833128
81.498008
47.647705

40.423011
31.882324
30.556819
16.034828
35.505526
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5.255557
15.816492
31.620638
80.867315
13.203980

3.355874
13.925713
64.401698
41.204157

104.795832

2.724010
38.726646
34.713028
77 .066567
11.897545
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n <- length(x.exp)
mean.exp <- mean(x.exp)

nboots <- 10000
boot.result <- numeric(nboots)
for(i in 1:nboots)

{

boot.samp <- sample(x.exp, n, replace=TRUE)
boot.result[i] <- mean(boot.samp)

}

hist(boot.result)
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## [1] 31.96579
quantile(boot.result, c(0.025,0.975))

#it 2.5% 97.5%
## 22.49355 42.19327

2.2.2 Pivot method

A pivot quantity is a function of the estimator whose distribution does not depend on the
parameter being estimated.

Example: Estimating the population mean, x based on the sample mean, Y . Then the

statistic 7 = You t(n—1) has a Student’s t distribution with »-1 degrees of freedom.

S/n

Because the distribution of 7"does not depend on 4, T'is a pivot quantity.
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When such a quantity exists, we can then use bootstrapping to estimate the distribution of
the pivot quantity—essentially a custom table—and use quantiles from the table to create
the confidence interval.

Y—u

N
Y- Ly osts (ﬁ) Susy- Ly o025 (ﬁ) )

where Y, S are the values from the original sample.

For the statistic 7 = , the confidence interval is given by

Bootstrap 95% T-pivot confidence intervals

set.seed(4123)
X.exp <- rexp(30, rate=1/25)

n <- length(x.exp)
mean.exp <- mean(x.exp)
sd.exp <- sd(x.exp)

nboots <- 10000
boot.t.result <- numeric(nboots)
for(i in 1l:nboots)

{

boot.samp <- sample(x.exp, n, replace=TRUE)
boot.t.result[i] <- (mean(boot.samp)-mean.exp)*sqrt(n)/sd(boot.samp)

}

hist(boot.t.result)
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t.upper <- quantile(boot.t.result, 0.975)
t.lower <- quantile(boot.t.result, 0.025)

lower95.1imit <- mean.exp - t.upper*sd.exp/sqrt(n)
upper95.limit <- mean.exp - t.lower*sd.exp/sqrt(n)
lower95.1imit

#it 97.5%
## 22.80743

upper95.1imit

H#t 2.5%
## 44.39896

Quantiles of t(29) distribution compared to bootstrap distribution

quantile(boot.t.result, c(0.005,0.025,0.05,0.95,0.975,0.995))

## 0.5% 2.5% 5% 95% 97.5% 99.5%
## -3.515286 -2.416519 -1.977130 1.496785 1.780026 2.367328

qt(c(0.005,0.025,0.05,0.95,0.975,0.995),n-1)
## -2.756386 -2.045230 -1.699127 1.699127 2.045230 2.756386
14



“Theory” behind T-pivot interval

Suppose we wish to estimate the mean of a population. The pivotal method can be used,
assuming we can find a statistic whose distribution does not depend on the parameters to be
estimated.

X-p
Var

either 4 or o, and thus ¢ isa pivotal quantity. Then since

Ex: = If X ~ N(u,0%), then ¢ ~ t(n —1) . The distribution of ¢ does not depend on

Pit, < <t =1-—a, we have
2

%

is a 100(1— a)% confidence interval for .

Now, since ¢ ~ t(n —1) where #(n —1) is symmetric, we have to/ =t o We can write
/2

)?_tl_%(%\/;)s;zsiﬂl_%(;\/;),

where if ¢ =.05,1-¢ 5= 975.

If the sample does not come from a normal population, ¢ is still a pivotal quantity so we can still
write

X-u
S

Jn
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S S = A
ot (et [2) o

But we can not say that £ ~#(n—1) !
One Solution: Estimate the distribution of 7 using bootstrap sampling.
X, -X

@

*For each bootstrap sample of size n from the data, compute 7, = , then find tb % and

2

tb,l— % and substitute into (1) above.
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2.2.3 Using bootstrap samples to estimate standard error.

The “original” or often called “standard” bootstrap method. This method is motivated by
the “Wald” interval which assumes that many statistics are approximately
normally distributed for large sample sizes, and creates the interval as

Estimator+Z ,,* SE .

If a formula for the SE is not available, then SE can be estimated using bootstrapping. For
example, to estimate the standard error of the mean:

n f— f— 2 —_—
1. Compute the mean squared error, MSE = EZ(XM - X) , Where X is the
n i=1 '

mean of the original sample and X, , is the mean of the ith bootstrap sample.

2. Compute SE =~/ MSE

3. The confidence interval is X £ Z,,, * SE

set.seed(4123)
X.exp <- rexp(30, rate=1/25)

n <- length(x.exp)
mean.exp <- mean(x.exp)

nboots <- 10000
boot.MSE.result <- numeric(nboots)
for(i in 1l:nboots)

{

boot.samp <- sample(x.exp, n, replace=TRUE)
boot.MSE.result[i] <- (mean(boot.samp)-mean.exp)”2

}

SE <- sqrt(mean(boot.MSE.result))

lower95.1imit <- mean.exp - gnorm(©.975)*SE
upper95.limit <- mean.exp + gnorm(@.975)*SE
lower95.1imit

## [1] 22.07738

upper95.1limit
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## [1] 41.85421
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3. Randomization/Permutation tests--Comparing two or more groups

A company is trying to decide whether to augment its traditional instruction for new employees
with computer assisted instruction. Seven new employees are selected. Four are assigned at
random to the new method and the remaining three to the traditional method. A test is given at
the end of instruction for all employees, and the scores are given below.

New method Smith (37), Lin (49), O’Neal (55), Zedillo (57)

Traditional method Johnson (23), Green (31), Zook (46)

Suppose we would like to test for evidence that the new method tends to produce higher scores.
We mighttest H, : ut,, = 1, VS. H, 1, > u,, using a t-test.

o ¢=2.08, p-value = 0.046. Statistically significant?
¢ Independent random samples from normally distributed populations?

Permutation/Randomization test.

e Sampling distribution based upon all possible assignments of the experimental units to
treatments.

e Important assumption: Each assignment is equally likely under the null hypothesis—
guaranteed by random assignment.

3.1 Creating a random permutation using R.

set.seed(4123)

score <- c(37,49,55,57,23,31,46)
perm <- sample(score, replace=F)
perm

## [1] 46 55 37 31 23 57 49
Now, compute the mean of the first 4 entries, the last 3 and compute the difference

mean.new <- mean(perm[1:4])
mean.new

## [1] 42.25

mean.trad <- mean(perm[5:7])
mean.trad
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## [1] 43

diff <- mean.new-mean.trad
diff

## [1] -0.75
Another way is to create an index vector, and sample for just one group.

set.seed(4123)

N <- length(score)

index <- sample(N, size=4,replace=F)
index

## [1]1 73 16

score[index]

## [1] 46 55 37 31

score[-index]

## [1] 49 57 23

diff2 <- mean(score[index])-mean(score[-index])
diff2

## [1] -0.75

3.2 Comparing groups

Steps of the permutation test using mean difference as the test statistic:
1. Compute the test statistic: D, = X, — X, on the observed data
2. Randomly assign units to treatments, and recompute D
3. Repeat #2 for all possible random assignments of units to treatments

4. The p-valueis P(D>D,, )= (# D values at least as large as D, )/(# randomizations).

3.2.1. Exact randomization distribution.

The table below lists all 35 possible randomizations and their corresponding mean differences.
Note that the permutation we created is that listed in row 19.
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Randomization Newl New2 New3 New4 Trad5 Trad6é Trad7

1
*2

© 00 N oo 0o b~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

46
37
37
31
31
37
37
23
31
23
31
31
23
31
23
23
31
31
31
23
23
23
23
31
23
23
23
23
23
23
23
23
23
23
23

49
49
46
49
46
46
46
49
46
46
46
37
46
37
46
37
37
37
37
31
37
37
37
37
37
31
31
31
31
37
31
31
31
31
31

55
55
55
55
55
49
49
55
49
55
49
55
49
49
49
55
49
46
46
55
49
49
46
46
46
49
49
46
46
46
46
37
37
37
37

57
57
57
57
57
57
55
57
57
57
55
57
57
57
55
57
55
57
55
57
57
55
57
49
55
57
55
57
55
49
49
57
55
49
46

23
46
31
46
37
31
31
46
23
37
23
46
31
46
31
46
46
23
23
46
46
46
31
23
31
46
46
37
37
31
37
46
46
46
49

31
23
49
23
49
23
23
31
37
49
37
49
37
23
37
49
23
49
49
49
31
31
49
55
49
37
37
49
49
55
55
49
49
55
55

37
31
23
37
23
55
57
37
55
31
57
23
55
55
57
31
57
55
57
37
55
57
55
57
57
55
57
55
57
57
57
55
57
57
57

X

New

-X
21.4167
16.1667
14.4167
12.6667
10.9167
10.9167
9.7500
8.0000
7.4167
6.2500
6.2500
5.6667
2.7500
2.1667
1.5833
1.0000
1.0000
0.4167
-0.7500
-2.5000
-2.5000
-3.6667
-4.2500
-4.2500
-5.4167
-6.0000
-7.1667
-7.7500
-8.9167
-8.9167
-12.4167
-13.0000
-14.1667
-17.6667
-19.4167

Trad

Sum New

207
198
195
192
189
189
187
184
183
181
181
180
175
174
173
172
172
171
169
166
166
164
163
163
161
160
158
157
155
155
149
148
146
140
137
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Two of 35 possible assignments of units to observations were as large or larger than the
observed value of D, =16.2 (one of these is D,,, =16.2). Thus the p-value is

P(D>D,,)=2/35~0.057.

obs

e Exact p-value—does not depend upon unverifiable assumptions

e The p-value (0.046) from the t-test can be viewed as an approximation to the exact
permutation p-value.

3.2.2 Using R to generate many randomizations and compute p-value.

Now, we use a for loop as before to create many random permutations and corresponding
mean differences, store all the mean differences and then compute the p-value.

score <- c(37,49,55,57,23,31,46)

observed.diff <- mean(score[1l:4] - mean(score[5:7]))

N <- length(score)

set.seed(4132)

nperms <- 9999

perm.result <- numeric(nperms) # vector to save the random differences

for(i in 1l:nperms)

{
index <- sample(N, size=4, replace=FALSE) #Choose 4 values w/o replacement
perm.result[i] <- mean(score[index]) - mean(score[-index])

}

hist(perm.result)
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(sum(perm.result >= observed.diff)+1)/(nperms + 1) #P-value

## [1] 0.0562

Note that this p-value is not exact.

When sample sizes are moderate to large, enumerating all possible arrangements may be very
time consuming at best and practically impossible at worst. As the table below illustrates, with
two samples of 25, there are over 100 trillion arrangements to consider!

Total sample size Sample 1 Sample 2 Permutations
10 5 5 252
20 10 10 184,756
30 15 15 155,117,520
40 20 20 137,846,528,820
50 25 25 126,410,606,437,752

Solution:

Randomly sample the population of permutations. While enumerating 1 trillion

permutations may be computationally time-prohibitive, in many cases enumerating

10,000 or even 100,000 is not. When estimating an exact p-value based on a random
23



. I / 1-
sample of R permutations, the exact p-value would be expected to be within 2 %

with 95% confidence. For example, if the true p-value is p = 0.05, the estimate would be
expected to be within the margins of error below:

95% margin

R of error
1000 0.013784
5000 0.006164

10000 0.004359
100000 0.001378
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Example. This dataset contains results from an experiment in visual perception using random dot
stereograms, such as that shown below. Both images appear to be composed entirely of random
dots. However, they are constructed so that a 3D image (of a diamond) will be seen, if the
images are viewed with a stereo viewer, causing the separate images to fuse. Another way to fuse
the images is to fixate on a point between them and defocus they eyes, but this technique takes
some effort and practice. An experiment was performed to determine whether knowledge of the
form of the embedded image affected the time required for subjects to fuse the images. One
group of subjects (group NV-43 subjects) received either no information or just verbal
information about the shape of the embedded object. A second group (group VV-35 subjects)
received both verbal information and visual information (e.g., a drawing of the object).

[Cleveland, W. S. (1993). Visualizing Data. Original source: Frisby, J. P. and Clatworthy, J.L.,
"Learning to see complex random-dot stereograms,” Perception, 4, (1975), pp. 173-178]

. . 78 . .
A randomization test on these data involves over (43} >1.8x10% permutations. In the following

code, the data are read and a boxplot created that shows several outliers in each group. Thus we
consider using the median difference as the test statistic instead of the mean difference. The p-
value is estimated based on 10,000 randomly sampled randomizations.

fusion=read.table("C:/Users/sjricht2/Documents/DataSets/Independent samples T
-test/Fusion_data.txt", header=TRUE)
boxplot(fusion$time~fusion$treatment)

25
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names (fusion)
## [1] "time" "treatment”

N <- length(fusion$time)

Treatl <- subset(fusion, Select=time, treatment=="NV", drop=T)
Treat2 <- subset(fusion, Select=time, treatment=="VV", drop=T)
N1 <- length(Treatl)

head(Treatl,5)

#H# time treatment
#t#t 1 47.20001 NV
## 2 21.99998 NV
## 3 20.39999 NV
#t# 4 19.70001 NV
## 5 17.40000 NV
head(Treat2,5)

#H# time treatment
#t# 44 19.70001 \'AY;
## 45 16.19998 v
## 46 15.90000 vV
#t# 47 15.40002 \'AY;
## 48 9.70000 v
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observed.fusion <- median(Treatl$time)-median(Treat2$time)
observed.fusion

## [1] 3.3

nperms <- 9999
set.seed(4132)

result <- numeric(nperms)
for(i in 1l:nperms)
{
index <- sample(N, size=N1, replace = FALSE)
result[i] <- median(fusion$time[index]) - median(fusion$time[-index])

}

(sum(result >= observed.fusion)+1)/(nperms + 1)

## [1] 0.3213
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What hypotheses are being tested by the permutation test?

No population distribution is assumed, and thus it does not make sense to test parameters
(e.g., equality of means).

Null hypothesis: Population distributions are identical
Alternative hypothesis: Observations tend to be larger in one of the populations

3.2.3 Choice of test statistic

Another advantage of the permutation test is that the function of the sample that is best suited
to address the research question may be used. For a test of location difference, we may use

e Difference of means
e Difference of medians
e others (e.g., trimmed means, ratios)
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3.3 Wilcoxon Rank sum test: Permutation test on rank transformed data

e Requires only ordinal level data
e Reduces effect of outliers for interval level data
e Hypotheses are the same as permutation test on raw data

Rank transformation: replace data with their respective ranks
e For WRS test, data from both samples are combined, then assigned ranks
e Tied observations generally all receive the “average rank”

Steps for WRS test.
1. Combine observations and assign ranks, with tied observations receiving the average rank

2. Perform permutation test on ranks (mean difference or sum of ranks in sample 1 can be
used as test statistic)

fusion=read.table("C:/Users/sjricht2/Documents/DataSets/Independent samples T
-test/Fusion_data.txt", header=TRUE)

fusion$ranks.time <- rank(fusion$time)

head(fusion,5)

#H# time treatment ranks.time
## 1 47.20001 NV 78.0
## 2 21.99998 NV 77.0
## 3 20.39999 NV 76.0
## 4 19.70001 NV 74 .5
## 5 17.40000 NV 73.0

N <- length(fusion$time)

Treatl <- subset(fusion, Select=ranks.time, treatment=="NV", drop=T)
Treat2 <- subset(fusion, Select=ranks.time, treatment=="VV", drop=T)
N1 <- length(Treatl)

observed.fusion <- mean(Treatl$ranks.time)-mean(Treat2$ranks.time)
observed.fusion

## [1] 11.42791

nperms <- 9999
set.seed(4132)

result <- numeric(nperms)
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for(i in 1l:nperms)
{
index <- sample(N, size=N1, replace = FALSE)
result[i] <- mean(fusion$ranks.time[index]) -
mean(fusion$ranks.time[-index])

}

(sum(result >= observed.fusion)+1)/(nperms + 1)

## [1] 0.2064

3.4 Selecting Among Two-sample tests

1) r-test—If selecting independent random sample from normal populations, is optimal for

detecting location difference

2) Permutation test using means—Gives exact p-value regardless of distribution of

population. Power will be similar to ¢-test

3) Permutation test using medians—Can have higher power than tests on means, especially

for skewed and heavy-tailed distributions

4) Permutation test using ranks (Wilcoxon rank-sum test)-- Can have higher power than
tests on means, especially for skewed and heavy-tailed distributions

The WRS test has been studied extensively in relation to the #-test. The #-test tends to have higher
power for symmetric distributions, especially for lighter tailed distributions and smaller sample
sizes. The WRS test generally has higher power for heavier-tailed distributions and moderate to

large sample sizes.

3.5 More than two groups

The methods of this section can be extended to more than two groups. The ANOVA F-statistic
can be used as the test statistic if using the raw, numeric data. The randomization test based on

ranks is known as the Kruskal-Wallis test.
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3.6 Randomization tests for contingency tables

Example. Seven patients are included in a study to compare two methods of relieving
postoperative pain. Three are allowed to control the amount of pain-relief medicine themselves,
while the other four are given a physician prescribed level of medicine according to standard
practice. Afterward, the patients evaluate their satisfaction as either “not satisfied (NS)”,
“somewhat satisfied (SS)” or “very satisfied (VS)”.

NS SS VS
Physician prescribed 2 2 0
Self-administered 0 1 2

Is there an association between the method of pain-relief and satisfaction?

Null hypothesis—Method and satisfaction are independent (or, the distributions of patients
among the satisfaction categories are identical)

Alternative hypothesis—There is an association between method and satisfaction (or, the
distributions of patients among the satisfaction categories are different).

Typically a chi-squared test would be considered to assess these hypotheses, using the test
statistic

Xi= (observed —expected )2
- all cells exp ected

which has an approximate y° ((rows—l)(cols—l)) distribution for large sample sizes.
However, the approximation can be poor when there are small expected counts.
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The randomization test can be viewed as identical to the two-group permutation test with a
quantitative response, i.e.,

Physician prescribed | NS1, NSz, SSs, SS4

Self-administered SSs, VSe, VS7

Then a randomization test can be performed by randomly assigning observations to groups, as
follows:

on the observed data

. bserved —expected )’
1. Compute the test statistic: X’ = Y, (observe pected)
’ all cells exp ected

2. Randomly assign units to treatments, construct the corresponding table and compute
2
perm

3. Repeat #2 for all possible random assignments of observations to groups

4.The p-valueis P(X7,, > X% )= # X values at least as large as X, )/(#

perm perm

randomizations).

Example. The expected frequencies are computed below as (row total)*(column total)/n.

table <- matrix(

c(2, 2, o,
e) 1) 2))
nrow = 2, byrow = TRUE
)
table
#it [,11 [,2] [,3]

## [1,] 2 2 o
## [2,] © 1 2

chitest <- chisq.test(as.table(table))

## Warning in chisq.test(as.table(table)): Chi-squared approximation may be
## incorrect

chitest
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HH#

## Pearson's Chi-squared test

H#H#

## data: as.table(table)

## X-squared = 4.2778, df = 2, p-value = 0.1178

chitest$expected

#H# A B C
## A 1.1428571 1.714286 1.1428571
## B 0.8571429 1.285714 ©.8571429

For the observed table, the chi-squared statistic is 4.28.

One particular randomization would be the following

Physician prescribed | SSs, NSz, SSs, SS4

Self-administered NS1, VSe, VS7

and the resulting table would be

NS SS VS
Physician prescribed 1 3 0
Self-administered 1 0 2

The chi-squared statistic for this table is 4.96.

This process would be somewhat cumbersome to code. Luckily, R has built-in functions that can
do this.

Approximate p-value based on a random sample of permutations

table <- matrix(
c(z) 2} e)
9) 1’ 2))
nrow = 2, byrow = TRUE
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chisq.test(as.table(table),simulate.p.value=T, B=10000)

#it
H#H#
##
#it
H#H#
##

Pearson's Chi-squared test with simulated p-value (based on 10000
replicates)

data: as.table(table)
X-squared = 4.2778, df = NA, p-value = 0.3247

Exact p-value based on all possible permutations

table <- matrix(

)

c(2, 2, o,
e) 1) 2))
nrow = 2, byrow = TRUE

fisher.test(as.table(table))

#it
##
#it
#it
##
#it

Fisher's Exact Test for Count Data

data: as.table(table)
p-value = 0.3143
alternative hypothesis: two.sided

Approximate p-value based on chi-squared distribution

table <- matrix(

)

c(z) 2) @,
9) 1J 2))
nrow = 2, byrow = TRUE

chisq.test(as.table(table))

##
H#H#

#it
H#H#
##
#it
#H#

Warning in chisq.test(as.table(table)): Chi-squared approximation may be
incorrect

Pearson's Chi-squared test

data: as.table(table)
X-squared = 4.2778, df = 2, p-value = 0.1178
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4. Methods for correlation and regression

4.1. Randomization test for linear relation between quantitative variables

Data are either
(a) a random sample of bivariate pairs (X,,)f) or

(b) values of Y, are obtained for fixed values of .X..

1(a): There is usually no a priori reason to assign either X or Y as independent or dependent.
Thus use correlation as a measure of strength of linear relationship.

_ E[(X — 1, )(Y — )]
0,0y

Correlation -- p (population correlation)

3 (X, - X)(,-T)

i=1

> (X~ XF -7’

Estimate of p -- 7 = \/

Totest H,:p=0:

n—2
The test statistic IZ( 17 )r ~t(n—2) can be used if the (X, Y) pairs are a random sample

from a bivariate normal population.
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1(b): Fit the model ¥, = /4, + B.X, +& where &, s are iid with mean 0 and variance 2.
is the slope of the regression line.

- fﬂ.ﬁ:Z(X"_)_()(Yf_?)
stimator of A3: 5, S (X, - x)
— Y )? ~
To test H,: 3 =0, the test statistic is ¢ = ,Z()A;T)()ﬂl ~t(n-2), if & ’sare normally

distributed.

R S,
It can be shown that B, =7 S and also that Z,,,, =2, .
X

So, to test for a linear relation between X & Y, we can use either statistic.

4.1.1 Pearson correlation or slope of regression line

A permutation test may be used to obtain an exact p-value, regardless of the form of the
distribution of &;’s. Under /1, : 3 =0 or H,:p=0, X does not affect the value of ¥, so an

observed Y is just as likely to occur with any X. Thus, the permutation distribution is derived
from all possible assignments of the observed Ys to the observed Xs.

The procedure is exactly the same as for comparing groups.

Steps of the permutation test using » Or ,[;’1 as the test statistic:

1. Compute the test statistic, e.g., r, on the observed data

2. Randomly assign observations (Y’s) to treatments (X’s), and recompute the test
statistic, 7,

v " perm *
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3. Repeat #2 for all possible random assignments of observations to treatments

4. The p-value is
P(Fyp 27,y ) = (# T,y Values at least as large as 7,)/(# permutations).

perm

Example. Lea (1965) discussed the relationship between mean annual temperature and the
mortality rate for a type of breast cancer in women. The subjects were residents of certain
regions of Great Britain, Norway, and Sweden.

Randomization test for linear association

set.seed(4123)

cancer <- read.table('C:/Users/sjricht2/Documents/DataSets/Regression/Breast
Cancer Data.txt', header=T)

cancer

#it Mortality Temperature

#t 1 102.5 51.3
## 2 104.5 49.9
##t 3 100.4 50.0
##t 4 95.9 49.2
## 5 87.0 48.5
## 6 95.0 47.8
## 7 88.6 47.3
## 8 89.2 45.1
## 9 78.9 46.3
## 10 84.6 42.1
## 11 81.7 44 .2
##t 12 72.2 43.5
## 13 65.1 42.3
## 14 68.1 40.2
## 15 67.3 31.8
## 16 52.5 34.0

plot(cancer$Temperature,cancer$Mortality)
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r.obs <- cor(cancer$Temperature,cancer$Mortality)
r.obs

## [1] 0.8748544

slope.obs <- 1m(cancer$Mortality~cancer$Temperature)$coeff[2]
slope.obs

## cancer$Temperature
#H# 2.357695

n <- length(cancer$Mortality)
nperms <- 9999 #set number of times to repeat this process

result.r <- numeric(nperms)
result.slope <- numeric(nperms)
for(i in 1:nperms)
{
index <- sample(n, size=n, replace = FALSE)
result.r[i] <-
cor(cancer$Temperature,cancer$Mortality[index])
result.slope[i] <-
Im(cancer$Mortality[index]~cancer$Temperature)$coeff[2]

}

"Permutation test p-value'
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## [1] "Permutation test p-value"

(sum(result.r >= r.obs)+1)/(nperms + 1)

## [1] le-04

(sum(result.slope >= slope.obs)+1)/(nperms + 1)

## [1] le-04

4.1.2. Rank correlation

The randomization test can be carried out on rank transformed data. The X and Y values are
ranked separately, and Pearson correlation calculated on the rank-transformed data. Pearson
correlation calculated on rank transformed data is called Spearman correlation. The alternative
hypothesis for this test is that the rank-transformed data have a linear association, or that the
original data have a monotonic (strictly increasing or decreasing) relation.

Randomization test for rank correlation

set.seed(4123)

cancer <- read.table('C:/Users/sjricht2/Documents/DataSets/Regression/Breast
Cancer Data.txt', header=T)

rank.temp <- rank(cancer$Temperature)
rank.mort <- rank(cancer$Mortality)

plot(rank.temp,rank.mort)
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r.obs <- cor(rank.temp,rank.mort)
r.obs

## [1] 0.9029412

n <- length(rank.mort)
nperms <- 9999 #set number of times to repeat this process

result.r <- numeric(nperms)

for(i in 1:nperms)
{
index <- sample(n, size=n, replace = FALSE)
result.r[i] <-
cor(rank.temp,rank.mort[index])
}

"Permutation test p-value'
## [1] "Permutation test p-value"
(sum(result.r >= r.obs)+1)/(nperms + 1)

## [1] le-04
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4.2 Bootstrap confidence intervals for correlation and slope

Intervals for p

Suppose we have a random sample of ordered pairs, (X,-,Z), i=12,...,n.If the distribution of

(X,J,/) is bivariate normal, then it can be shown that:

Zzlln[1+r}~N Lipfirp) L |
2 | 1-r 2 \1-p ) n-3

which can be used to construct an interval estimator for o . This interval is not robust to

departures from normality, however. Notice also that the distribution of Z depends on the
population correlation, o , and thus Z is not a pivot quantity.

Bootstrap interval.

1) Draw a specified number of bivariate bootstrap samples of size 7, i.e., sample pairs
of observations.

2) Compute ,, -, the sample correlation for each bootstrap sample.

3) Use the percentile method to construct confidence interval. (No pivot quantity exists).

4.2.1 Bivariate bootstrap sampling

boot.index <- sample(l:nrow(cancer), replace = TRUE)
boot.index

## [1] 8 116131316 1 315 3 614 7 2 14 12
cancer

H## Mortality Temperature

#it 1 102.5 51.3
##t 2 104.5 49.9
## 3 100.4 50.0
#t 4 95.9 49.2
## 5 87.0 48.5
## 6 95.0 47.8
##t 7 88.6 47.3

42



## 8 89.2 45.1
## 9 78.9 46.3
## 10 84.6 42.1
## 11 81.7 44 .2
## 12 72.2 43.5
## 13 65.1 42.3
## 14 68.1 40.2
## 15 67.3 31.8
## 16 52.5 34.0
boot.data <- cancer[boot.index, ]
boot.data

#i Mortality Temperature
## 8 89.2 45.1
## 1 102.5 51.3
## 16 52.5 34.0
## 13 65.1 42.3
## 13.1 65.1 42.3
## 16.1 52.5 34.0
## 1.1 102.5 51.3
## 3 100.4 50.0
## 15 67.3 31.8
## 3.1 100.4 50.0
## 6 95.0 47.8
## 14 68.1 40.2
## 7 88.6 47.3
## 2 104.5 49.9
## 14.1 68.1 40.2
## 12 72.2 43.5

4.2.2 Bootstrap confidence interval for correlation, using bivariate sampling

set.seed(4123)
cancer <- read.table('C:/Users/sjricht2/Documents/DataSets/Regression/Breast
Cancer Data.txt', header=T)

nboot <- 10000
r.boot <- numeric(nboot)
slope.boot <- numeric(nboot)

for (i in 1l:nboot) {

boot.index <- sample(l:nrow(cancer), replace =
boot.data <- cancer[boot.index, ]
r.boot[i]=cor(boot.data$Mortality, boot.data$Temperature)

}

TRUE)
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cor(cancer$Mortality, cancer$Temperature)
## [1] ©.8748544
quantile(r.boot,c(0.01,.025,.05,.10,.90,.95,.975,0.99))

#it 1% 2.5% 5% 10% 90% 95% 97.5%
## 0.7428583 0.7683708 0.7915637 0.8150605 0.9461222 0.9569523 0.9647395
## 99%
## 0.9722582

The observed correlation is 0.875, and a 95% confidence interval is (0.768, 0.965).
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Extra.
Bootstrap C.I for slope

Case 1: Data consists of a sample of bivariate pairs (X, Y).

1) Draw a specified number of bivariate bootstrap samples of size #, i.e., sample pairs of
observations.

2) Compute ,BAl'b , the slope of the regression line, for each bootstrap sample.

3) Use the percentile method to construct confidence interval.

Since a pivot quantity exists for the sample slope, a 7-pivot interval may also be computed.

A A~

The statistic ¢ = M where SE(ﬁl) = ﬂEz , Is a pivotal quantity.

SE(f,) (n=1)S

Thus:

1) Draw a specified number of bivariate bootstrap samples of size #; i.e., sample pairs
of observations.

~ ~

By

SE(B.,)’

MSE,

b .

(n-1)s2,°

2) Compute £, = where SE(3,,) =

3) For a given confidence level, 1— « , determine the quantiles by and ¢, o
12 /2

4) The confidence interval is given by:

,Bl - tb,l—a/ZSE(ﬁl) < ﬁl < ,Bl - th,a/st(:él) .

4.2.3 Fixed X sampling for the slope

e May be used for inferences on slope of regression line.
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e Assumes Y = i(X)+ ¢, Where 4(X) is some function, say a linear function, &are
independent, identically distributed with mean 0, variance o°.

e |dea: Sample errors and then add to the mean.

Steps:
1) Compute A(X) from the observed sample.

2) Compute the errors, e, =Y, —ﬁ(X,.) :

3) Select a bootstrap sample of » errors (€, ) and compute Y, h(X)+el pi=l..,n.
4) Repeat (3) N,times.

This yields 1V, bootstrap samples, each consisting of r pairs, (X,,Y,,,) .

1) For each bootstrap sample compute

~

,where 3, , is the slope of the pairs (X,&)for each bootstrap sample, and

e

SE(ﬂle)

MSE,
(n-1s2

SE(B,.) =

2) Then for a given confidence level, 1— « , determine the quantiles ¢

and ¢ .
e,% e,l—%

3) The confidence interval is given by [5'1 —le,l_a/zSE(/}l) <p < /3’1 —teya,zSE(/g’l) :

Fixed X sampling: Assumes

e Correct function being fit.
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e X-values constants

e Constant error variance

If these assumptions are questionable, use bivariate sampling. Bivariate sampling will
usually result in a larger standard error if assumptions for fixed-X sampling appear
violated.

*See example 8.4.1
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5. Two-Sample Confidence Intervals

Two cases, as in parametric case: Model: Y =4+

1)

~ F'(€) (common error distribution)

Pivot quantity:
— (Yl_Yz)_(/ul_/uz)

SE(Y,-1,)

Bootstrap interval:

i) Compute ¢; =Y, — ffor each observation.

ii) Select n, errors, with replacement, from the set of all errors and assign to 1%

sample. Then select 72, in similar fashion and assign to second sample.

e, =, 5 2.2(e-¢e)

’Sgp_
-2
NESS (m +n,~2)

m

iii) Compute ¢, =

iv) Interval is (Y, —Y,)—1,, .,SEY,-Y,) <4 — 1, <(Y,-Y,)—t, ., SE(Y, - Y,).

2) Unequal error distributions: Select errors within samples.

(e -g)’

SE(Y,-1,) = /Sl %2 . Compute £, = \/7 where 52 = ——=
el g2 n; —

Interval is: (Y, —Y,)—t,, .,SEQ,—-Y,) <o — 1, <Y, - Y,) 1, ,,SE(Y, - Y,).
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